

CUNY 22 UC Davis, 2009

The Effect of Partial Semantic Feature Match in Forward Prediction and Backward Retrieval Ming Xiang¹, Maria Polinsky¹, Lan Chen², Christina Kelly¹, Suiping Wang² ¹Linguistics Department, Harvard University ²Psychology Department, South China Normal University

Introduction

When processing long distance dependencies, do prediction and retrieval processes lead to different effects of accuracy and interference?

• Retrieval -- interference in long distance retrieval due to the decay of the representations that need to retrieved [1]

 Prediction -- sharpened expectations facilitate parsing anti-locality effect [2,3]

standard N400 effect [4,5]

It is not clear whether prediction simply facilitates parsing of the expected target, or is subject to interference as well (when confronted with overlapping but not fully anticipated semantic features):

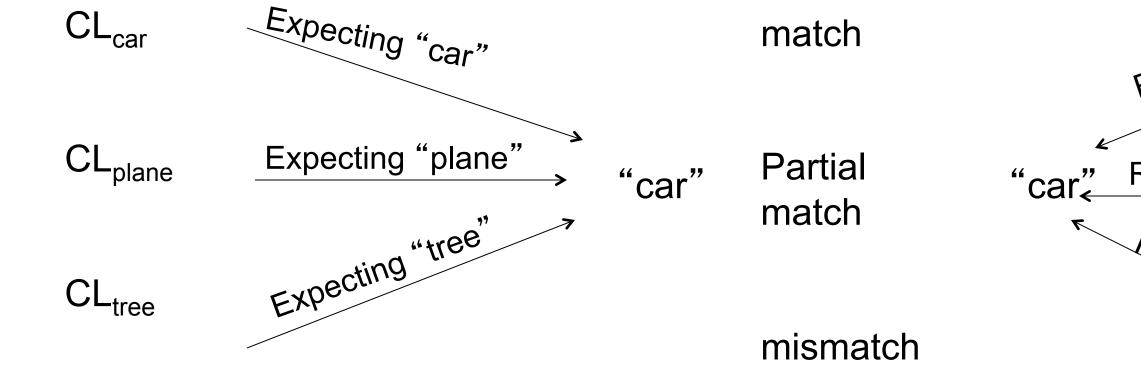
• Highly constrained contextual expectation facilitates only the fully expected target, but loosely constrained expectation facilitates both the expected target and semantically related targets [6]

• semantically related targets are facilitated by contextual expectations regardless of how constrained the expectations are [7]

Chinese Classifier...N Dependency

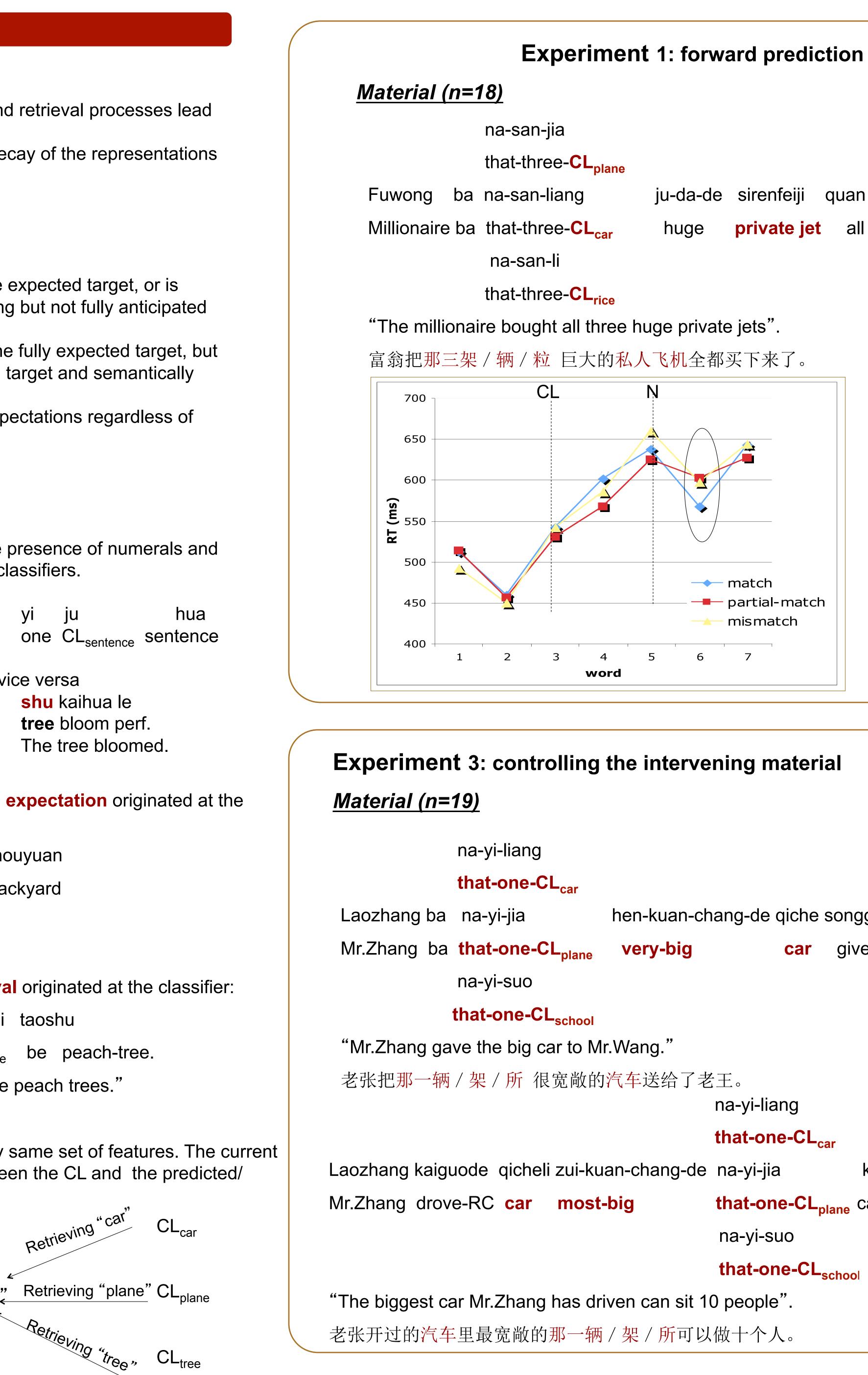
• Mandarin Chinese classifiers must be used with nouns in the presence of numerals and demonstratives. Different nouns could be paired with different classifiers.

yi ke shu	yi ge ren	yi
one CL _{tree} tree	one CL _{person} person	on


• The presence of a classifier obligatorily requires a N, but not vice versa <mark>shu</mark> kaihua le na **ke** that **CL**_{tree} **tree** bloom perf. That tree bloomed.

•Processing the canonical CL...N word order involves forward expectation originated at the classifier:

henpiaoliangde **shu** zhongzaile houyuan Zhangsan ba na-liang-<mark>ke</mark> Zhangsan ba that-two-CL_{tree} very beautiful tree planted backyard "Zhangsan planted those two trees in the backyard."


• Processing the N...CL word order involves backward retrieval originated at the classifier: Zhangsan zhong de shu li zuipiaoliangde na-liang-ke shi taoshu Zhangsan plant LINKER tree most beautiful that-two-CL_{tree} be peach-tree. "Among the trees Zhangsan planted, the most beautiful two are peach trees."

• The expectation and the retrieval processes share the exactly same set of features. The current study manipulated the feature match (semantic distance) between the CL and the predicted/ retrieved N:

Norming

In a cloze task, native Mandarin speakers (n=25) gave their preferred nouns to a list of 55 commonly used classifiers. 26 highly constrained classifiers were chosen for the current study (21/25 on average for their cloze probability).

Discussion

CL_{tree}

• The effect of close semantic distance: both prediction and retrieval processes are affected by close semantic distance, even when the set of predictive/retrieval features is highly constrained.

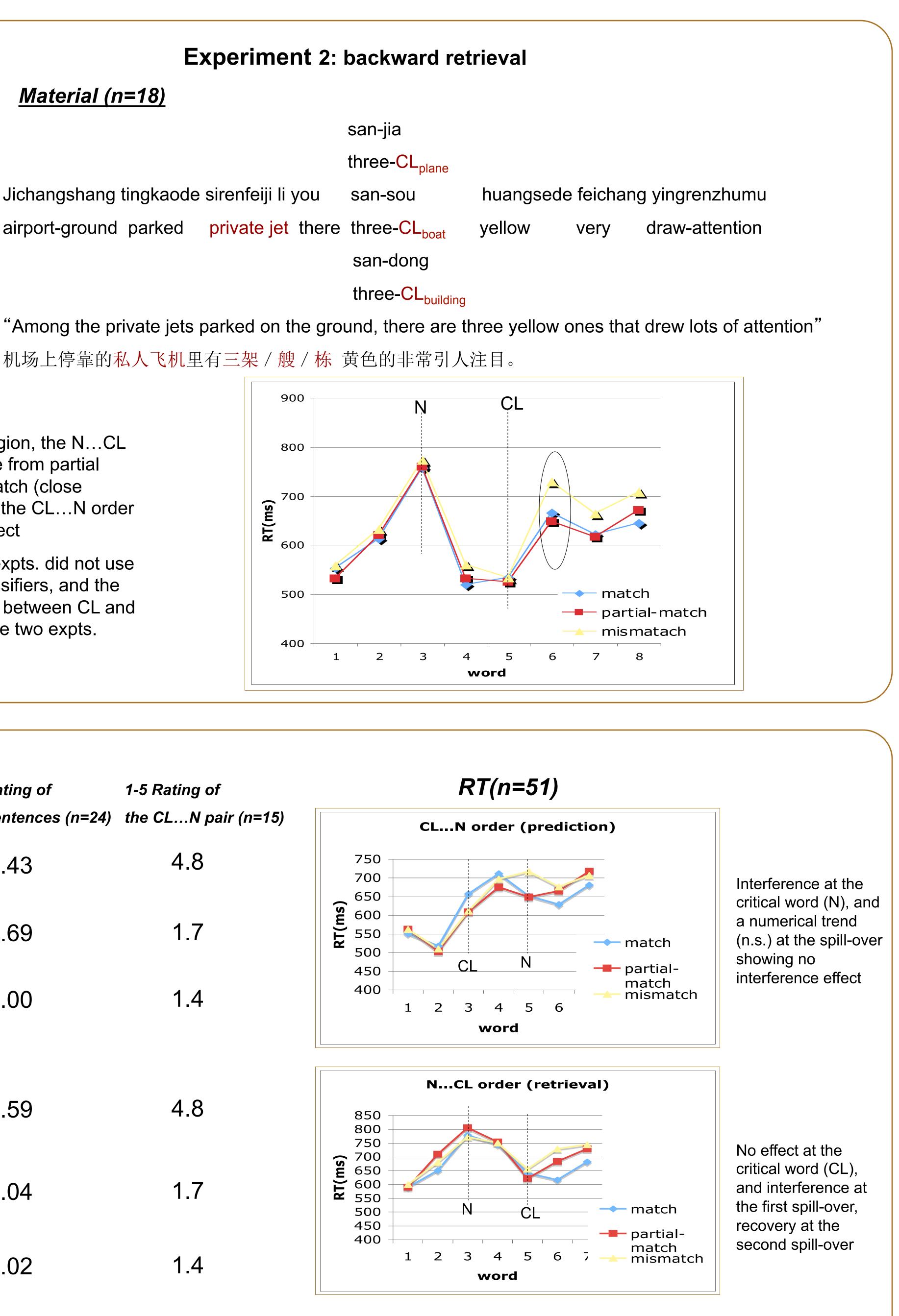
• Difference between prediction and retrieval processes: The effects of grammaticality and interference appeared online immediately when there is an expectation at the critical word; when there is only retrieval without prediction, the same effect was delayed. This suggests prediction and retrieval may play different roles in the dynamics of parsing

• Future work will determine whether prediction process can lead to faster recovery from the interference.

Material (n=18)

quan dou maixialai le. private jet all bought

Jichangshang tingkaode sirenfeiji li you airport-ground parked


机场上停靠的私人飞机里有三架 / 艘 / 栋 黄色的非常引人注目。 • At the spill-over region, the N...CL showed interference from partial semantic feature match (close 700 **'** semantic distance); the CL...N order showed no such effect

• However the two expts. did not use the same set of classifiers, and the intervening material between CL and N was different in the two expts.

	1-7 Rating of the sentences (n=24)	1-5 Rating of the CL…N pair (n=15)	
	6.43	4.8	
n-chang-de qiche songgei le LaoWang g car give Mr. Wang	4.69	1.7	
	4.00	1.4	
了老王。 na-yi-liang	5.59	4.8	
that-one-CL _{car}			
-de na-yi-jia keyizuo shigeren. that-one-CL_{plane} can sit 10 people na-yi-suo	$1 \cap 1$	1.7	
that-one-CL _{school}	4.02	1.4	
it 10 people".			

469-495

References

1] Lewis, R. & Vasishth, S. (2005). An activation-based model of sentence processing as skilled memory retrieval. Cognitive Science, 29 (3):375-419.

[2] Vasishth, S., & Lewis, R. L. (2006). Argument-head distance and processing complexity: Explaining both locality and anti-locality effects. Language 82(4), 767-794 [3] Levy, R. (2008). Expectation-based syntactic comprehension. Cognition 106(3):1126-1177.

[4] Kutas, M. & Hillyard, S.A. 1984. Brain potentials during reading reflect word expectancy and semantic association. Nature 307, [5] DeLong, K., Urbach, T., and Kutas, M. Probabilistic word pre-activation during language comprehension inferred from electrical

brain activity. Nature Neuroscience, 2005, 8(8), pp. 1117-1121. [6] Schwanenflugel, P. J., & LaCount, K. L. (1988). Semantic relatedness and the scope of facilitation for upcoming words in sentences. Journal of Experimental Psychology: Learning, Memory, & Cognition, 14, 344–354.

[7] Federmeier, K. & Kutas, M. (1999). A rose by any other name: long-term memory structure and sentence processing. JML 41,

Acknowledgment We want to thank Brian Dillon and Cherry Yum for their help in data collection.